2021年2月22日星期一

High-voltage Lithium Batteries Development

 


High Voltage Batteries

A high-voltage battery refers to a battery whose battery voltage is relatively higher than the ordinary battery that we use. With the development of global diversification, our lives are constantly changing, including the various electronic products we come into know. Then you must not know some of the components of these products, such as high-voltage lithium-ion batteries.

With the continuous improvement of the requirements for the capacity of lithium-ion batteries by electrical equipment, people have higher and higher expectations for the improvement of the energy density of lithium-ion batteries. In particular, various portable devices such as smart-phones, tablet computers, and notebook computers have put forward higher requirements for lithium-ion batteries with small size and long standby time. Also in other electrical equipment, such as energy storage equipment, power tools, electric vehicles, etc., are constantly developing lithium-ion batteries with lighter weight, smaller size, higher output voltage, and power density, so the development of high energy density Lithium-ion batteries are an important research and development direction in the lithium battery industry.

A high-voltage battery refers to a battery whose battery voltage is relatively higher than the ordinary battery. According to battery cells and battery packs, it can be divided into two types. The high-voltage battery is defined from the voltage of the battery cell. This aspect is mainly for lithium batteries. At present, the types of lithium battery cells mainly include high-voltage lithium battery cells and low-voltage lithium battery cells.

At present, lithium cobalt oxide has been widely studied and applied as a high-voltage anode material. The structure is non-nafeo2 type, which is more suitable for lithium-ion insertion and ejection. The theoretical energy density of lithium cobalt oxide is 274mAh/g, the production process is simple, the electrochemical performance is stable, and the market occupancy is high. In practical applications, only part of lithium ions can be reversibly inserted and ejected. The actual energy density is about 167mAh/g (working voltage is 4.35v). Increasing the working voltage can significantly increase the energy density. For example, increasing the operating voltage from 4.2v to 4.35v can increase the energy density by about 16%.

High-voltage lithium battery cells have higher energy density and lower safety performance than low-voltage batteries, but their discharge platform is relatively high. Under the same capacity, high-voltage batteries are lighter than low-voltage batteries in terms of volume and weight.

With the increase in voltage, high-voltage lithium-ion batteries will reduce certain safety performance during use, so they have not been used in batches in power vehicles. At present, the battery cathode materials used in power vehicles are mainly ternary materials and lithium iron phosphate. To increase the energy density to meet the demand, generally choose 811NCM and NCA and other high nickel cathode materials, high capacity silicon-carbon anode or improve battery space utilization and other methods to improve its energy density and endurance.

High current and high voltage make lithium cobalt oxide materials used in high-energy-density batteries, such as high-end mobile phone battery manufacturers’ increasingly high battery performance requirements, which are mainly reflected in the demand for higher energy density, such as carbon requirements for 4.35V battery cathodes The energy density is about 660wh/L, and the 4.4V battery has reached about 740wh/L. This requires the anode material to have a higher compaction density, a higher empty volume, and the structure of the material under high pressure and high pressure has a better stability. However, lithium cobalt oxide electrode materials have shortcomings such as scarcity of cobalt resources, high prices, and certain toxicity of cobalt ions, which limit its wide application in power lithium batteries.

In terms of discharge rate of high-voltage and low-voltage batteries, high-voltage lithium batteries have a higher discharge rate and stronger power than low-voltage lithium batteries. Therefore, in theory, a high-voltage battery should be more suitable for use in products and equipment that require high-rate discharge. , In order to better exert its advantages.

In the process of research and design, there must be problems of one kind or another. This requires our scientific research workers to constantly sum up the experience in the design process in order to promote continuous product innovation.

If you want to know more about high-voltage batteries, please check https://www.grepow.com/page/high-voltage-battery.html

For customized high voltage batteries, please contact us directly at info@grepow.com

2021年1月29日星期五

LiFePO4 batteries are used in the industrial

 

lithium iron phosphate (LiFePO4) battery


Lithium iron phosphate battery
 is a lithium-ion battery that uses lithium iron phosphate (LiFePO4) as the positive electrode material and carbon as the negative electrode material. The rated voltage of the monomer is 3.2V, and the charge cut-off voltage is 3.6V~3.65V.


Application of lithium iron phosphate (LiFePO4) battery

1.Application of the new energy automobile industry

Lithium iron phosphate batteries are widely used in passenger cars, buses, logistics vehicles, low-speed electric vehicles, etc. due to their safety and low-cost advantages. Although, in the current new energy passenger vehicle field, it is subject to the state’s subsidy policy for new energy vehicles. Influence, relying on the advantages of energy density, ternary batteries occupy a dominant position, but lithium iron phosphate batteries still occupy an irreplaceable advantage in fields such as passenger cars and logistics vehicles. In the field of passenger cars, lithium iron phosphate batteries remain mainstream. In the field of special-purpose vehicles, the proportion of lithium iron phosphate batteries is gradually increasing. The use of lithium iron phosphate batteries in the extended-range electric vehicle market can not only improve the safety of vehicles, but also support the marketization of extended-range electric vehicles, eliminating the anxiety of pure electric vehicles such as mileage, safety, price, charging, and subsequent battery issues.

"<yoastmark

2. Start the application on the power supply

In addition to the power lithium battery characteristics, the starter lithium iron phosphate battery also has the ability of instantaneous high-power output. The traditional lead-acid battery is replaced by a powerful lithium battery with an energy of less than one kilowatt-hour, and the traditional starter motor and generator are replaced by a BSG motor. , It not only has the function of start and stop at idle speed, but also has the functions of engine stop coasting, coasting and braking energy recovery, acceleration assist, and electric cruise.

3. Application of energy storage market

Lithium iron phosphate battery has a series of unique advantages such as high working voltage, high energy density, long cycle life, low self-discharge rate, no memory effect, and green environmental protection. It also supports stepless expansion and is suitable for large-scale electric energy storage. Energy power stations have good application prospects in such fields as safe grid connection, grid peak shaving, distributed power stations, UPS power supplies, and emergency power systems.

With the rise of the energy storage market, in recent years, some power battery companies have deployed energy storage business to open up new application markets for lithium iron phosphate batteries. On the one hand, due to the characteristics of ultra-long life, safe use, large capacity, and environmental protection, lithium iron phosphate can be transferred to the energy storage field, which will extend the value chain and promote the establishment of new business models. On the other hand, energy storage systems supporting lithium iron phosphate batteries have become a mainstream choice in the market. According to reports, lithium iron phosphate batteries have tried to be used in electric buses, electric trucks, user-side, and grid-side frequency modulation.

1) Safe grid connection of renewable energy power generation

The inherent randomness, intermittent news, and volatility of wind power generation determine that its large-scale development will inevitably have a significant impact on the safe operation of the power system. With the rapid development of the wind power industry, especially most wind farms in my country are “large-scale centralized development and long-distance transmission”, the grid-connected power generation of large-scale wind farms pose severe challenges to the operation and control of large-scale power grids.

"<yoastmark

Photovoltaic power generation is affected by ambient temperature, sunlight intensity, and weather conditions, and photovoltaic power generation has the characteristics of random fluctuations. my country presents a development trend of “decentralized development, low-voltage on-site access” and “large-scale development, medium, and high voltage access” simultaneously, which puts forward higher requirements for power grid peak shaving and safe operation of the power system.

Therefore, large-capacity energy storage products have become a key factor in solving the contradiction between the power grid and renewable energy power generation. The lithium iron phosphate battery energy storage system has the characteristics of fast working condition conversion, flexible operation mode, high efficiency, safety, and environmental protection, and strong scalability. Engineering applications have been carried out in the national wind and solar storage and transmission demonstration project, which will effectively improve equipment efficiency and solve Local voltage control problems, improve the reliability of renewable energy power generation and improve power quality so that renewable energy can become a continuous and stable power supply.

With the continuous expansion of capacity and scale and the continuous maturity of integrated technology, the cost of energy storage systems will be further reduced. After long-term safety and reliability tests, lithium iron phosphate battery energy storage systems are expected to be used in wind power, photovoltaic power generation, etc. Safe grid connection of energy power generation and improvement of power quality are widely used.

2) Lithium iron phosphate battery for grid peak shaving

The main method of power grid peak shaving has always been pumped storage power stations. As the pumped storage power station needs to build two reservoirs, the upper and lower reservoirs are restricted by geographical conditions, it is not easy to construct in plain areas, and it covers a large area and high maintenance cost. Use lithium iron phosphate battery energy storage system to replace pumped storage power station, cope with grid peak load, free of geographical conditions, freedom of location, less investment, less land occupation, low maintenance cost, and will play an important role in the process of power grid peak regulation.

3) Lithium iron phosphate battery for distributed power station

The shortcomings of large-scale power grids make it difficult to guarantee the quality, efficiency, safety, and reliability requirements of the power supply. For important units and enterprises, dual power supplies or even multiple power supplies are often required as backup and protection. Lithium iron phosphate battery energy storage system can reduce or avoid power outages caused by grid failures and various accidents, and ensure a safe and reliable power supply for hospitals, banks, command and control centers, data processing centers, chemical materials industries, and precision manufacturing industries. Play an important role.

4) Lithium iron phosphate battery for UPS power supply

The sustained and rapid development of China’s economy has brought about the decentralization of UPS power users’ demand, which has caused more industries and more enterprises to have a continuous demand for UPS power.

Compared with lead-acid batteries, lithium iron phosphate batteries have the advantages of long cycle life, safety and stability, environmental protection, and low self-discharge rate. With the continuous maturity of integration technology, the cost continues to decrease. Lithium iron phosphate batteries are used in UPS power batteries. Will be widely used.

"The

4. Applications in other fields

Lithium iron phosphate battery is also widely used in the military field because of its good cycle life, safety, low-temperature performance, and other advantages. Grepow battery company made a strong appearance at the military-civilian integration technology innovation exhibition, exhibiting military products including -45℃ military ultra-low temperature battery.

If you are interested in our products, please don’t hesitate to contact us at any time!
Email: info@grepow.com
Grepow Website: https://www.grepow.com/

2021年1月21日星期四

Wide temperature-range Ni-MH battery -40℃ to 80℃

 

Wide temperature-range Ni-MH battery | Grepow Blog

The temperature has one of the greatest impacts on the charge and discharge performance of batteries. The electrode/electrolyte interface is considered the heart of the battery, and the electrochemical reactions at this interface are closely related to the ambient temperature. If the temperature drops, the reaction rate of the electrode also drops.

When NiMH batteries are charged and discharged, multiple factors must be considered: the surrounding environment of the batteries but especially battery performance and service life under extreme temperatures.

We will explore what occurs to NiMH batteries, particularly wide temperature-range NiMH batteries, when under low and high temperatures.


Wide temperature-range NiMH batteries


Wide temperature-range NiMH batteries, as their name implies, are a type of NiMH batteries with a wide working-temperature range and excellent performance at -40°C to 80°C. In other words, these batteries can operate efficiently at both low and high temperatures, and their temperature limitations are greatly reduced.

Under low temperatures

The discharge efficiency of ordinary nickel-hydrogen batteries are significantly reduced at low temperatures. At -20°C, the lye reaches its freezing point and the battery charging speed greatly diminishes. Charging at low temperatures (below 0°C) increases the internal pressure of the battery and possibly causes the safety valve to open.

In order to charge effectively, the ambient temperature range must be controlled between 5℃ to 30℃. Generally, charging efficiency increases with the rise of temperature. However, when the temperature rises above 45℃, the performance of the battery degrades, and the cycle life of the battery greatly shortens.

Under low temperatures, the viscosity of electrolyte becomes higher, the proton transfer rate inside the electrode becomes slower, and the ohmic internal resistance also increases, which leads to larger polarization of the battery during discharge. Some batteries cannot discharge at low temperatures due to large polarization.

Under high temperatures

Under high temperature, the viscosity of the electrolyte decreases, and the hydrophilic ability of various materials increases. Liquid absorption also increases, which leads to the expansion of the electrode sheet, and liquid starts to leak from poor electrical receptivity.

The following is the electrochemical principle of charging and discharging Ni-MH batteries with KOH as the electrolyte (7moL/LKOH+15g/LLiOH).

Charge

Positive Pole: Ni(OH)2+OH-→NiOOH+H2O+e-

Negative Pole: M+H2O+e-→MH+OH-

Total Response: M+Ni(OH)2→MH+NiOOH

Discharge

Positive Pole: NiOOH+H2O+e-→Ni(OH)2+OH-

Negative Pole: MH+OH-→M+H2O+e-

Total Response: MH+NiOOH→M+Ni(OH)2

In the above formula, M is the hydrogen storage alloy and MH is the hydrogen storage alloy with adsorbed hydrogen atoms. The most commonly used hydrogen storage alloy is LaNi5.

Characteristics of a wide temperature-range Ni-MH battery

The following are a couple of the characteristics of a Grepow’s wide temperature-range Ni-MH battery:

The charging and discharging efficiency of 0.2C at -40℃ can reach 80%

The charging and discharging efficiency of 0.2C at 80℃ can reach 85%

Ni-MH battery technology has been tried, tested and proven for commercial and industrial applications especially in automotive batteries and outdoor power supplies in high and cold temperatures. Its safety and reliability are unparalleled in the market.

Grepow Inc. offers a variety of Ni-MH batteries with a wide temperature range. These batteries provide new electrode-development technologies that can achieve a long life, and they have good usability and stability with compatible sizes.

For more information on batteries, stay tuned to our blog or our Battery Monday channel.

If you are interested in our products, don’t hesitate to contact us at any time!

Email: info@grepow.com

Grepow Website: https://www.grepow.com/

2021年1月19日星期二

the causes of lithium batteries to swell

Lithium-ion polymer batteries are widely used due to their long life and high capacity. However, there are some issues that can arise, such as swelling, unsatisfactory safety performance, and accelerated cycle attenuation.

This article will primarily focus on battery swelling and its causes, which can be divided into two categories: the first is a result of a change in thickness of the electrode, and the other is a result of the gas produced by the oxidation and decomposition of electrolytes.

The change in thickness of the electrode pole piece

When a lithium battery is used, the thickness of the electrode pole pieces, especially the graphite negative electrodes, will change to a certain extent.

Lithium batteries are prone to swelling after high-temperature storage and circulation, and the thickness growth rate is about 6% to 20%. Of this, the expansion rate of the positive electrode is only 4%, the negative electrode’s is more than 20%.

The fundamental reason for the increase in the thickness of the lithium battery pole piece is due to the nature of graphite. The negative electrode graphite forms LiCx (LiC24, LiC12, LiC6, etc.) when lithium is inserted, and the lattice spacing changes, resulting in microscopic internal stress and an expansion of the negative electrode.

[caption id="attachment_3476" align="aligncenter" width="505"]the schematic diagram of the structure change of the graphite anode plate in the process of placement, charge and discharge. The figure is the schematic diagram of the structure change of the graphite anode plate in the process of placement, charge, and discharge.[/caption]

The expansion of graphite negative electrodes is mainly caused by irreversible expansion after lithium insertion. This part of the expansion is mainly related to the particle size, the adhesive, and the structure of the pole piece. The expansion of the negative electrode causes the core to deform, which in turn causes the following: a cavity between the electrode and the diaphragm, micro-cracks in the negative electrode particles, breaking and reorganizing of the solid electrolyte interface (SEI) membrane, the consummation of electrolytes, and deterioration of the cycle performance.

There are many factors that affect the thickness of the negative pole piece although the properties of the adhesive and the structural parameters of the pole piece are the two most important reasons.

The commonly used bonding agent for graphite negative electrodes is SBR. Different bonding agents have different elastic modulus and mechanical strength and have different effects on the thickness of the pole piece. The rolling force after the pole piece is coated also affects the thickness of the negative pole piece in battery use.

When the amount of SBR added is inconsistent, the pressure on the pole piece during rolling will be different. Different pressures will cause a certain difference in the residual stress generated by the pole piece. The higher the pressure, the greater the residual stress, which leads to physical storage expansion, a full electric state, and an increase in the expansion rate of the empty electric state.

The expansion of the anode leads to the deformation of the coil core, which affects the lithium intercalation degree and Li + diffusion rate of the negative electrode, thus seriously affecting the cycle performance of the battery.

Bloating caused by lithium battery gas production

The gas produced in the battery is another important cause of battery swelling. Dependent on whether the battery is in a normal temperature cycle, high-temperature cycle, or high-temperature shelving, it will produce different degrees of swelling and gas production.

According to the current research results, cell bloating is essentially caused by the decomposition of electrolytes. There are two cases of electrolyte decomposition: one is that there are impurities in the electrolyte, such as moisture and metal impurities, which cause the electrolyte to decompose and produce gas. The other is that the electrochemical window of the electrolyte is too low, which causes decomposition during the charging process.

After a lithium battery is assembled, a small amount of gas is generated during the pre-formation process. These gases are inevitable and are also the source of irreversible capacity loss of the battery.

During the first charging and discharging process, the electrons from the external circuit to the negative electrode react with the electrolyte on the surface of the negative electrode to generate the gas. During this process, the SEI is formed on the surface of the graphite negative electrode. As the thickness of the SEI increases, electrons cannot penetrate and inhibit the continuous oxidation and decomposition of the electrolyte.

When a battery is used, the internal gas production gradually increases due to the presence of impurities in the electrolyte or excessive moisture in the battery. These impurities in the electrolytes need to be carefully removed. Inadequate moisture control may be caused by the electrolyte itself, improper battery packaging, moisture, or damage to the corners. Any overcharge and over-discharge, abuse, and internal short-circuiting will also accelerate the gas production rate of the battery and cause battery failure.

In different systems, the degree of battery swelling is different.

For instance, in the graphite anode system battery, the main causes of gas swelling are the SEI film formation, excessive moisture in the cell, abnormal chemical conversion process, poor packaging, etc.

In the lithium titanate anode system, battery swelling is more serious. In addition to the impurities and moisture in the electrolyte, lithium titanate cannot form an SEI film on its surface like a graphite-anode system battery to inhibit its reaction to the electrolyte.

If you are interested in good quality battery products, please don't hesitate to contact us at any time!
Email: info@grepow.com
Grepow Website: https://www.grepow.com/

2020年12月21日星期一

8 Inspiration for Flexible Batteries

 

flexible battery

People’s needs and other electronic products such as wearable electronic devices, electronic paper, smart clothing, etc. have urgently needed foldable and retractable flexible batteries. Lithium-ion batteries have become an ideal research object for flexible batteries because of their higher energy density and longer service life. A complete lithium-ion battery contains the main parts of the positive electrode, negative electrode, separator, electrolyte, current collector, and battery packaging materials. During the folding and stretching process of the flexible battery, each part has to undergo certain deformation. Therefore, the materials and structures of all parts of the flexible battery must maintain performance after several times of folding and stretching.

Applications of Bionics

After hundreds of millions of years, the creatures on earth have been constantly evolving to adapt to the changing living environment. We humans also draw inspiration from the changes in nature and create many new things. “Bionics” has been used in various fields. For example, radial and spiral filaments make spider webs have good toughness and elasticity. People have made nanofiber webs based on spider webs. For another example, according to a paper-cut craft in our daily life, flexible supercapacitors with similar structures also get good performance. During the development of flexible batteries, what inspirations have we got from nature? This article will introduce in detail.

Applications of Bionics
Applications of Bionics

1. Buckling structure

The buckling structure, also known as the wave-shaped structure, is a wave-shaped stretchable structure as the name implies. The active material is usually coated on a wave-shaped metal pole piece to make a stretchable electrode. The multi-layer buckling structure based on this wave structure shows better performance. In 2015, Fang and Baughman’s research team jointly published an article on Science. The carbon nanotube layer (NTS) is rolled onto a stretched elastic rubber fiber. When the fiber tension pressure is released, its surface is covered. The carbon nanotubes formed a multilayer buckling structure. This kind of multi-buckling structure carbon nanotubes has a resistance change of less than 5% when the tensile deformation is 1320%, which has good application potential in flexible batteries.

Figure 1. The formation process and SEM picture of multilayer buckling structure
Figure 1. The formation process and SEM picture of multilayer buckling structure

2. Origami

Origami is the art of folding or folding paper. The paper is folded into a specific shape and pattern. Intricate designs can be created only through the skill of folding. By folding, bending, etc., the 2D dimensional paper is folded into various shapes in 3D space. And what kind of spark did the application of origami technology to flat lithium-ion batteries sparked? In 2014, the Jiang research team of Arizona State University assembled the current collector, positive electrode, negative electrode, separator, and packaging material according to two different angles. When stretched or bent, the battery can withstand great stress due to the folding effect. Very good elasticity, and still maintain a good cycle capacity after folding the battery many times.

Figure 2. Assembly diagram of the folded battery
Figure 2. Assembly diagram of the folded battery

3. Paper cut

Paper-cutting is one of the oldest folk art in China. It is used to cut patterns on paper to decorate life or cooperate with some folk activities. Unlike origami, paper cutting involves cutting paper. In 2015, the Song research team of Arizona State University produced a “cut-N-shear” battery assembly structure through cutting and folding. When there is an external force, the notch can be rotated to adjust the structure. The battery assembled by this method can still maintain energy storage performance when stretched by 150%.

Figure 3. "cut-N-shear" battery assembly structure diagram
Figure 3. “cut-N-shear” battery assembly structure diagram

4. Spring

Springs can be seen everywhere in our lives. The spring is widely used because of its good elasticity and restoring force. In the design of flexible batteries, the source of inspiration is also indispensable. The Peng research team of Fudan University winds carbon nanotubes on spring-shaped fibers, and the resulting carbon nanotube electrodes retain their shape and capacity during the stretching process. They also made Li4TiO (LTO) anode material and LiMn2O4 (LMO) cathode material together into a spring structure. The battery capacity of this structure does not change when stretched.

Figure 4. Schematic diagram and SEM photo of battery assembly with spring structure
Figure 4. Schematic diagram and SEM photo of battery assembly with spring structure

5. Porous structure

Porous structures, such as sponges, not only have good water absorption but also have good elasticity. In 2016, Yi Cui of Stanford University filled the electrode material, carbon material, and binder into the sponge-like PDMS to form a 3D porous lithium-ion battery that maintained excellent energy storage performance when stretched by 80%.

Figure 5. Schematic diagram of sponge battery
Figure 5. Schematic diagram of sponge battery

6.2D “Crack”

Sometimes the formation of cracks is not necessarily a bad thing, distance can produce beauty. When thermal electron beam evaporation or electron beam evaporation produces gold thin films, micro-cracks can be formed on the thin films by controlling parameters. When there is an external force, these cracks can act as a buffer. Conductive polymers such as PEDOT: PSS, P3HT, etc. will also use this strategy in the production process to increase the flexibility of the polymer film.

Figure 6. SEM pictures of the gold film (with microcracks) on PDMS substrate before and after stretching
Figure 6. SEM pictures of the gold film (with microcracks) on PDMS substrate before and after stretching

7. Mesh structure

The web-like structures in nature such as spider webs have excellent mechanical properties, are very soft and tough, and some web-like structures, such as leaf veins and rivers, can be effectively transported by cross-linked webs. All these structures are used to make flexible electrodes. The simplest method of making mesh electrodes is to randomly coat the active material on the surface of the elastic substrate or inject it into the inside. When pressure is applied from the outside, the active material will be compressed and connected together. This method will not destroy the original structure of the active material, and at the same time can produce good conductivity. The silver nanowires produced by the Lee and Ko research groups of the Korean Academy of Science and Technology form a net-like circuit network when stretched, and have good conductivity when used as electrodes.

Figure 7. Reticulated silver nanowire electrode
Figure 7. Reticulated silver nanowire electrode

8. Self-repair function

Although many different methods are envisaged to make flexible materials, the actual situation is often more complicated. When a flexible instrument containing both flexible and rigid materials receives an external force, the internal structure of the instrument will inevitably undergo structural changes and even damage. Inspired by the self-healing mechanism of natural organisms and plants, flexible batteries have a similar design. In 2012, Zhenan Bao’s research team at Stanford University filled nickel nanoparticles into self-healing polymers at temperatures below room temperature. At 31% nickel content, the composite can be used as an electrode, and at 15% nickel content, the composite can be used as a mechanical sensor. When the two ends of the composite are placed at room temperature, it can self-repair external force damage and restore electrical conductivity.

Figure 8. Nickel composite electrode structure with self-healing function
Figure 8. Nickel composite electrode structure with self-healing function

Functionalization has always been the ultimate goal of people developing new materials. And just like us humans, many complex behaviors do not rely on a single organ and require coordination of various parts. The same is true for flexible batteries, which require all parts of the battery to cope with changes in external forces. Nature provides us with space and food for our survival. It also gave us a lot of inspiration. The development of flexible batteries draws on many examples from nature. At the same time, we believe that more scientific researchers will apply “bionics” to flexible batteries to promote the development of flexible batteries.

2020年12月14日星期一

What is a Flexible Battery?

 

GREPOW Curved Lithium Polymer Battery

Flexible batteries refer to batteries that can be folded and twisted at will, including primary and secondary batteries. Unlike traditional rigid batteries, their design is conformal and flexible. They can maintain their characteristic shape even when continuously bent or twisted. It is to turn the traditional liquid electrolyte into a solid-state, and “print” the internal structure of the traditional lithium-ion battery on the flexible substrate so that the battery will not be “powered off” even if it is bent or folded, thereby ensuring the battery It can work normally even after bending or folding.

Demand for flexible batteries

We are used to thinking of batteries as bulky tools that can store energy and power electronic devices. For a long time, disposable carbon-zinc batteries, rechargeable lead-acid batteries, and nickel-cadmium batteries have been dominant.

flexible batteries Market descriptions by territory
Figure 1: Market descriptions by territory      Source: IDTechEx

With the emergence of portable devices such as netbooks, ultrabooks, and other handheld devices, the battery market has seen explosive growth of various types, among which the most popular is lithium-ion rechargeable batteries. However, as electronic products become thinner and more flexible, batteries must now get rid of their rigid form and adapt to their bending. Therefore, the thin-film flexible battery market has also followed.

Market observer IDTechEx predicts in their new report that by 2026, the current small thin-film battery market will reach US$470 million. According to He Xiaoxi, a technical analyst at IDTechEx, this is the reason why companies such as TDK, STMicroelectronics, LG, Samsung, and Apple are increasingly involved. Considering the Internet of Things, the deployment of wearable devices and other environmental sensors is getting faster and faster, and it is imperative to replace traditional battery technology. New dimensions and designs are urgently needed. For example, Samsung has a curved battery in the Gear Fit wristband.

Flexible battery manufacturers

The GREPOW battery manufacturer has more than 20 years of battery manufacturing experience. Special-shaped battery technology is mature. The advantages of the special-shaped battery are their adaptability, lightweight and portability, which makes them easy to be used in products such as small and wearable electronic devices. achieve. Therefore, GREPOW is working hard to manufacture different shaped batteries, including rechargeable batteries with high energy density and good shape, and is in a leading position in the industry. Here are two types of batteries related to flexible batteries: curved batteries, Thickness: 1.6 mm ~ 4.5 mm; Width: 6.0 mm ~ 50 mm; Inner arc length: 20 mm ~ 55 mm; Inner arc radius: ≥8.5 mm.

GREPOW curved battery 
Figure 2: curved battery      Source: GREPOW battery

Another GREPOW special-shaped battery: ultra-thin battery, Charge the battery to 3.83v and fix the battery to the surface of the white PVC card. Fix the cell pole card to the bending and torsion tester, 15 degrees forward and backward, and 30 degrees total distortion, for bending and torsion test. After the bending and torsion test of the 0.45mm ultra-thin cell for 9000 times, the surface of the cell was folded and the internal pole sheet had creases. The internal resistance increased by about 45%. The voltage before and after the bending and torsion basically remained unchanged.

ultra thin battery 
Figure 3: ultra-thin battery      Source: GREPOW battery

STMicroelectronics (ST) is producing thin-film solid-state lithium batteries in small quantities. The report said that two other companies are producing printed batteries. Therefore, there are now various flexible batteries on the market competing for power to power several devices.

Other companies are also trying other strategies. For example, TDK is developing battery-less energy harvesters. The idea is because IoT nodes and wearable devices require extremely low power to operate, so they can be operated by energy harvesters instead of batteries. Other companies such as Oakridge Global Energy Solutions Inc. plan to increase production capacity at their Brevard County, Florida plant. They will manufacture electrodes and batteries for thin-film solid-state lithium batteries. They acquired this technology from Oak Ridge Micro-Energy Inc. in 2002 and plan to start mass production in early 2017.

Types and applications of flexible batteries

Various flexible batteries will soon be on the market. These will include thin-film batteries, printed batteries, layered lithium polymer batteries, micro-batteries, advanced lithium-ion batteries, thin flexible supercapacitors, and stretchable batteries.

Understandably, they will have multiple uses. For example, wearable devices are expected to become the greatest potential for flexible batteries. Printed batteries in the form of skin patches have been used in the healthcare industry, and the market is growing steadily. At present, although the high cost of printed zinc batteries hinders its widespread application, this application has the greatest potential. According to the IDTechEx report, the market for micro-power batteries that power disposable medical devices will expand rapidly.

 flexible batteries Applications
Figure 4: Applications of batteries with new form and structural factors     Source: IDTechEx

There are other requirements for batteries that power various types of power sources, displays, and flexible sensors. The U.S. Department of Defense has invested $75 million to create the Flexible Hybrid Electronics Manufacturing Institute in San Jose.

The promotion of flexible batteries and flexible electronics is of great significance. Based on the demand for electronic equipment for batteries, the promotion of flexible battery technology and the cooperation of flexible display, biosensor, and flexible circuit technologies will help to develop more flexible electronic devices for medical health monitoring, smart textiles, smartphones, and global It is applied in multiple scenarios such as positioning system tracking, Internet of Things, and human-computer interaction.

If you are interested in our battery products, please don’t hesitate to contact us at any time!
Email: info@grepow.com
Grepow Website: https://www.grepow.com/

2020年12月9日星期三

What is a Good-quality Rechargeable Button-cell Battery?

  

Rechargeable Button-Cell Battery

Rechargeable button-cell batteries are widely used in various devices, so it’s important to know the characteristics of these batteries.  We will briefly explore some of these attributes in this article.

Safety

Safety is one of the most basic and important manufacturing guidelines for all batteries. To prevent short circuits and leakage in button-cell batteries, manufacturers of rechargeable button- cell batteries choose chemically stable materials.

Stability

The M-shaped bump process allows for better contact with machines, which allows for more durability and elimination of frequent replacements. The performance will not be affected even in bad weather conditions. Disassembly and assembly are also easier and faster, and spare batteries can be replaced at any time. Rechargeable button cell batteries allow the appliance to run steadily for a long time, reducing various potential hazards and ensuring personal safety.

Rechargeable Button-Cell Battery

Good conductivity

The applications of rechargeable button-cell batteries usually require the coexistence of corrosive chemicals or airborne contaminants in a dry environment. Therefore, they must have good electrical conductivity. Only when their electrochemical properties are excellent will the batteries be able to perform their task.

Long life

The long life expectancy of rechargeable button-cell battery products is one of the button cell’s many advantages. Under normal conditions of use, the charge and discharge cycle can be recycled ≥400 weeks, and the capacity ≥80%. 

High-cost performance and very good conductivity

Rechargeable button-cell batteries are highly cost-effective and highly conductive. Adding some beneficial metals not only ensures power performance but also improves their cost-effectiveness, so many battery manufacturers will use this method to produce rechargeable button-cell batteries.

In general, rechargeable button-cell batteries have a significant role in preventing accidental short circuits and leaks. Chemically stable materials usually have a higher safety factor. Batteries are also more durable, and they won’t hinder performance in harsh climates. They will not leak, explode, or spontaneously combust.

All in all, the advantages of rechargeable button-cell batteries are obvious. Since rechargeable button-cell batteries are not soldered to a printed circuit board, there is no need to surround it with other components and housings as their removal is usually very simple and easy.

Contact us for customization needs at info@grepow.com

Grepow Website: https://www.grepow.com/